

New options for an old problem – OA knee

Gary Hooper Christchurch

Large proteoglygans attract water

Collagen holds hydrated molecules together

Early degeneration of articular cartilage

Disrupted collagen causing water to escape

Prevention of articular damage

Meniscal function

Meniscal repair

□ Allografts

Collagen implants

Meniscal transplantation

Decreasing abnormal forces across articular cartilage = decreased wear and early degeneration

Abnormal
biomechanics
with excessive
medial load

Dealing with articular cartilage damage

1 Debridement and microfracture

2 Grafting procedures

3 Replacement

Articular cartilage damage

Grade 1 and 2

Grade 3

Microfracture

Multiple holes through subchondral bone to promote vascular response and formation of fibrocartilage

Chondral grafting

Regenerate articular cartilage

Autologous chondrocyte transplantation

Osteochondral grafting

Surgeon: HOOPER

Page: 2

Christchurch to the forefront studying scaffolds to deliver genetically engineered cells to tissues eg spinal injuries, articular cartilage defects

The Problem: tissue trauma, disease & repair

Articular cartilage degeneration and OA

Tissue Engineering & Regenerative Medicine

Regenerative Medicine research is what happens when you mix biological science with engineering

This broad field encompasses a variety of research areas ...

...cell therapy, tissue engineering, biomaterials engineering, growth factors and transplantation

science.

2000 – Time magazine - career in lissue engineering one of the "10 Hottest Jobs of the Future."

Tissue Engineering: the concept

 \Rightarrow NO TISSUE FORMS

Damaged knee cartilage **DOES NOT HEAL** $(avg \emptyset = 2-3cm)$

Take patient's cartilage cells or stem cells

Place cells in porous 3D scaffold \Rightarrow 3D TISSUE FORMS

Patient's own repair tissue implanted back into the damaged knee. The cartilage layer heals completely as scaffold biodegrades over time

Cells CReATE new Tissue Engineered cartilage in vitro

In viiro cunure a cell (re)differentiation

The Key Result: NOT all scaffolds and engineered tissues are CReATEd equal !

SYNERGISTIC effect of both architecture & composition

Woodfield *et al. Biomaterials,* 26(15) 2006; *Biomaterials,* 27(7) 2006; *Tissue Engineering.* 11(9) 2005; *Biomaterials,* 26(1) 2006; *Biomaterials,* 25(26) 2005; *Cell Proliferation,* 42(4) 2009. European Human Tissue & Cell Research (HTCR) Award

Joint replacement

Reliable in relieving pain
Major surgical procedure
Complications include infection, clots, dislocation
Long term problems are loosening and wear of the components

Experience with rigid bearing TKA

Excessive wear of polyethylene (6mm)
Fracture of medial tibial baseplate

Results

	KS P	KS F	NJKS	WOMAC	
Preop	36.64	44.21	60.51	54.84	
Year 1	82.47 *	62.81*	82.32*	19.26*	
Year 3	87.45*	63.04*	84.22*	18.34*	
Year 7	86.93*	59.79*	83.34*	25.55*	
Year 10				27.56*	
		* p<0.001			

Survival - poly wear

